Solution d'analyse de données

Régression log-linéaire ou de Poisson dans Excel

20/10/2017

Jeu de données pour la régression log-linéaire

Les données utilisées représentent le nombre de bourses obtenues par des étudiants d’une grande école. Pour expliquer le nombre de bourses obtenues, on dispose de deux prédicteurs qui sont la note de l’examen de mathématique et le type de programme dans lequel l’étudiant est inscrit (professionnel, général ou académique).

Les données à expliquer étant des données de comptage, une régression log-linéaire avec une distribution de Poisson doit être utilisée afin d’expliquer et/ou de prédire le nombre de bourses obtenues par un étudiant.

donnees regression log-linéaire

Paramétrer une régression log-linéaire

Une fois XLSTAT ouvert, sélectionnez la commande XLSTAT / Modélisation de données / Régression log-linéaire, ou cliquez sur le bouton correspondant dans la barre de menu.

menu regression log-linéaire

La boîte de dialogue Régression log-linéaire apparaît.

Les données sont présentées sous forme d’un tableau constitué de 200 lignes et 3 colonnes. La première colonne correspond à la variable réponse et les deux suivantes aux variables explicatives. Les données ont toutes le même poids et aucun Offset n’est présent.

 boite dialoggue regression log-linéaire general

Dans l’onglet Options, on trouve la possibilité de régler plusieurs critères concernant l’algorithme d’inférence, de fixer la constante du modèle et d’ajouter des interactions entre les variables. Nous choisissons ici de laisser l’ensemble des paramètres aux valeurs par défaut.

boite dialoggue regression log-linéaire options

Lancez les calculs en cliquant sur OK. Les résultats sont affichés dans une nouvelle feuille Excel.

Interpréter les résultats

Les premiers résultats affichés sont les statistiques descriptives pour chaque variable, la variable à expliquer est représentée en bleue.  

Le tableau suivant donne plusieurs indicateurs de la qualité du modèle (ou qualité de l'ajustement). Ces résultats sont équivalents au R2 et au tableau d'analyse de la variance de la régression linéaire et de l'ANOVA. La valeur la plus importante est le Chi2 associé au Log ratio (L.R.). C'est l'équivalent du test F de Fisher du modèle linéaire : on essaie d'évaluer si les variables apportent une quantité d'information significative pour expliquer la variabilité de la variable binaire. Dans notre cas, comme la probabilité est inférieure à 0.0001, on peut conclure que les variables apportent une quantité significative d'information.

regression log-linéaire coefficients

Le tableau suivant donne la valeur estimée des différents coefficients pour le modèle ajusté. Un test de significativité est également donné pour chaque coefficient. Dans notre cas, ce test permet de conclure que le paramètre associé à la modalité « Programme-Général » n’est pas significativement différent de 0 (à un niveau 5%).

regression log-linéaire paramètres

La dernière étape consiste en l'application du modèle sur l'ensemble de la population.

Nous contacter

Envoyer un email au service commercial

Contacter notre équipe de support technique : support@xlstat.com

https://cdn.desk.com/
false
desk
Chargement
il y a quelques secondes
il y a une minute
il y a quelques minutes
il y a une heure
il y a quelques heures
il y a un jour
il y a quelques jours
à propos de
false
Caractères non valides trouvés
/customer/portal/articles/autocomplete
9283